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Abstract
We are building an inspection workstation development
environment to use as a testbed for understanding what
types of knowledge, e.g., data, algorithms, and processes,
can increase the productivity of inspection operations.
Inspection can be more efficient through reducing the
need for fixturing, integrating the generation of process
plans and their execution within the controller, and
reducing the errors or data losses that occur by
translating the models to different formats.   Initial
configuration of inspection systems can be less costly
through the use of open architectures that are constructed
from components. Key elements of our work include in situ
feature-based planning, vision-driven part pose
estimation, and software methods to facilitate construction
of manufacturing controllers. These provide a rich
environment in which to study the categories of knowledge
that are useful in intelligent control of inspection
workstations.  This paper describes our vision, approach,
and preliminary results.

1. Introduction

Manufacturers are subject to ever increasing
profitability and quality requirements.   This leads them to
seek out greater flexibility and capability in their
manufacturing equipment and systems.  These
requirements have been documented under the Integrated
Manufacturing Technology Roadmapping (IMTR)
Initiative, which gathered inputs from industry and
government to determine the most pressing technology
needs and associated barriers that cut across multiple
sectors.   The IMTR reports [8] [9] listed as high priority
technical needs intelligent control systems that are based
on open, modular architectures, have model-based process
control, and function as components within the larger
enterprise information systems.

We are building an inspection testbed in order to study
the knowledge aspects required to address the
manufacturers’ stated needs.   In our context, knowledge
refers to the information, data, processes, and other
capabilities that are encoded or used by a controller and

enable it to achieve its goals.  We have chosen an
inspection workstation (IWS) as our principal testbed for
investigating the knowledge requirements for intelligent
controllers for several reasons.  Inspection is a costly, yet
critical function in any manufacturing operation.   We seek
to help reduce the costs of inspection setup and execution.
Inspection controllers today are closed, black box systems,
which are difficult and costly to enhance or customize. If
manufacturing systems are to become more capable and
autonomous, they have to be able to sense and respond to
their environment. We are developing a component-based
approach to building controllers that can lead to open
architecture frameworks that can be more easily
configured, enhanced, and maintained. Inspection provides
a sensory-rich environment for our experiments. We will
briefly describe our inspection testbed, and the Real-Time
Control System (RCS) reference architecture, on which it
is based.   We then present the feature-based process
planning and fixtureless inspection capabilities of the
testbed.   The software engineering aspects of the testbed
are then described, followed by the knowledge aspects of
the testbed. We conclude with some observations about
the approach and future directions.

2. The Inspection Workstation

The inspection workstation consists of a Cordax‡ three-
axis coordinate measurement machine (CMM) with a
touch-trigger probe.   A downward-looking camera is
mounted on the arm of the CMM. A typical usage scenario
would be the following:
1. The CMM operator puts the part to be measured onto

the work surface without fixturing it.  The part’s solid
model is downloaded to the controller. The model is in
terms of manufacturing features, such as holes and
pockets.

2. Manufacturing features from the solid model of the
part are used by the Feature-Based Inspection and

                                                
‡ Disclaimer:  Certain commercial products are identified in this article
to adequately specify the experimental procedure.  Such identification
does not imply recommendation or endorsement by NIST, nor does it
imply the materials or equipment identified are necessarily the best for
the purpose..



Control System (FBICS) to generate plans for the
necessary setups and inspection procedures.   The
FBICS process will be described below.   The final
output of the process is a series of Dimensional
Measuring Interface Standard (DMIS) files (described
below), which are stored on the controller.

3. The operator initiates the inspection through the user
interface by instructing the IWS to compute the
position of the part on the measurement table.   The
CMM moves the arm to a position that enables the
camera to view the measurement table and the part
thereon.  An intensity image of the part is captured.
The image is processed in order to extract 2D edge
features, which are compared with 2D features
extracted from a synthetic image of the solid model.
The edge features from the two sources are compared,
through a Pose Estimation and Part Recognition
(PEPR) algorithm, and an estimate of the part’s
location is produced.   The results are displayed to the
operator, who confirms that the location has been
correctly computed.

4. The location computed by PEPR is for coarse
localization. For more accurate positioning, the probe
is used to measure two or more known features on the
part. The part location is determined from the feature
locations.

5. The actual part coordinates are used by the FBICS
system to adjust the inspection plans.   The DMIS files
are sequentially interpreted and executed. Each DMIS
file corresponds to a feature that will be inspected.
Measurement results are captured in a DMIS output
file.   DMIS is a language that provides commands for
measuring higher-level geometric entities, such as radii
of circles, directions of straight edges, and planarity of
surfaces.   The CMM itself may only be able to
measure discrete points.   Hence a method must be
available to convert the desired measurement (e.g.
radius of a bore hole) to a series of measurement points
using the probe.   Conversely, the measured set of
points must be used to compute the resulting higher-
level measurement, which can then be compared to the
desired value for quality decisions.

6. The measurement results are analyzed and compared to
the desired dimensions. An analysis program flags out-
of-tolerance conditions.  Problem areas may be
highlighted graphically, as shown in Figure 1.
Inspection results are overlaid onto VRML models
with visual cues, such as deviation lines, to illustrate
where and how the part is out of tolerance.   Inspection
results are collected by a product information database
that captures statistical trends and can be used to
predict the need for interventions in the manufacturing
cells.  For example, it can determine the maintenance
intervals or flag excessive tool wear based on the
inspection results.

The scenario just described provides several
advantages.   The current state of the practice in inspection
requires numerous steps that cost time and resources, and
can lead to errors through sequences of interpretations and
transformations of data and intentions.  Inspection data
and visualization may be used by both manufacturing
engineers and design engineers to exchange data for better
Design for Manufacture (DFM). Some of the steps and
potential errors that are eliminated or reduced are:

• Design and production of fixturing for the particular
part to be inspected.

• Fixturing of the part by the operator.

• Creation of the inspection program, through a series
of “teach” motions on the equipment or through
manual selection of points on a graphical
representation of the part.

• Errors introduced by conversion of model geometry
between different systems and representations as data
has to be transferred to various software tools, for
example, from the original CAD system where it was
designed to a dimensioning and tolerancing package,
or to a tool for creating the DMIS program.

• Clear and quick visual references for inspection
technicians to understand where parts are out of
tolerance or are within tolerance.  With this
information, the manufacturers may be able to
identify tool wear trends, weaknesses in machine tool
operation, and deficiencies in the initial design for
manufacturability.  The visual cues may be simple
CAD models with whiskers or shaded areas
corresponding to tolerance data with out of tolerance
areas highlighted to quickly warn of problems.
Whiskers are lines representing visually the distance
and direction from the measured point to the desired,
nominal point on the part.

Figure 1: Visualization of Inspection Results



3. Software Architecture

The controller software is built following the Real-
Time Control System (RCS) reference architecture [1] [2].
Developed over the course of two decades at NIST and
elsewhere, RCS provides engineering guidelines for the
design and implementation of intelligent manufacturing
control systems.    RCS is geared towards the problem
domain where machines are designed to do useful work
while employing in situ knowledge (from sensors) and a
priori knowledge, tactics and strategy.   These intelligent
machines utilize feedback from the physical environment
to adapt and modify their plans in order to accomplish the
given goals.   Based on control theory principles, RCS
partitions the problem of control into four basic elements
that together comprise a control node: behavior generation
(BG), sensory processing (SP), world modeling (WM),
and value judgement (VJ).     Figure 2 shows the RCS
control node and the connections between its constituent
components.    The BG module plans and executes actions
to be performed by the equipment.   The SP module
gathers input from the world.  The WM element contains
the dynamic and transient data that is computed by the
system as it processes its sensory input and estimates its
state and the state of the world.   World modeling also
comprises the longer-term, more stable information
contained in external knowledge bases, such as CAD
models.   The VJ module is used to evaluate the
“goodness” of results that would be outcomes of plans
generated by BG.  BG may generate several tentative
alternative plans, which are evaluated by VJ in order to
select the best one.

Each individual control node receives commands,
generates commanded actions (actuation) and receives
inputs from the external world.  Each self-contained node
is a microcosm of a closed loop control system, producing

command signals to what it considers actuators and
receiving feedback from what it considers sensors.   The
actuators and sensors may be virtual, as described in [3].
Thus, actuation commands can be high-level, for example,
“Inspect pocket feature.”   The sensory feedback may have
been processed through various levels of abstraction and
may take the form of a set of geometric features. Control
nodes containing these fundamental capabilities are
assembled into a system, following a process of task and
temporal decomposition.    For more details on the
methodology see [14] and [7].  [4] describes the RCS
version used in this project, which is referred to as the
Intelligent Systems Architecture for Manufacturing
(ISAM).

Guidelines for system design include organizing the
control hierarchy around tasks that the system is to
perform in a top-down manner and the physical equipment
in a bottom-up manner.   The levels of the hierarchy are
determined by following the rule of thumb for control
system stability that states that control loops should be
separated by an order of magnitude.   The goal is to
manage the complexity at each level of the hierarchy.  The
span of control at a higher level is greater, both in terms of
the breadth of the planning space and the time that is to be
considered.  However, the resolution of the information or
knowledge that a higher level has to deal with is coarser.
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Figure 2: An RCS control node
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For example, the Workstation level produces plans for an
entire setup, which may take an hour to inspect and
comprises at least one entire face of a part.   However, it
does not have to deal with entities lower than at the feature
level.   Contrast this with the Task level, which plans for a
single feature that may take minutes to inspect.  The Task
level planner has to take into consideration higher-
resolution knowledge, such as edges, vertices, and their
parameters and dimensions.

Figure 3 shows a simplified view of the Inspection
Workstation controller hierarchy, including some of the
commands that are passed between levels.   The nodes
typically are run as separate processes on processors
running Solaris or VxWorks operating systems.   The
configuration of hardware is flexible, with nodes able to
be distributed across heterogeneous platforms.

4. Feature-Based Inspection

The feature-based process planner hierarchically creates
a set of inspection plans for a part. Each of the three top-
level controllers (Cell, Workstation, and Task) may
receive a command from its superior of the form "inspect
X" — in the case of the Cell controller, the superior is the
system user. At successively lower hierarchical levels, X
is a smaller item, but more such commands are received.
To carry out "inspect X," each of the three controllers
makes a plan for itself and executes that plan.

The highest level, Cell, receives an entire part design as
its input with a command to "inspect the part". The Cell
level planner analyzes the geometry of the part and
determines the number of setups that are required, creating
a process plan consisting of a number of run-setup steps.
In executing this process plan, the Cell controller sends the
Inspection Workstation controller a series of "inspect
setup" commands.

For each such command, the Inspection Workstation
controller analyzes the individual features that are to be
inspected in that setup and generates a process plan
consisting of a number of inspect feature steps.  In
executing this plan, the Inspection Workstation controller
sends the CMM Task controller a number of "inspect
feature" commands.

For each such command, the CMM Task controller
analyzes the feature and generates a process plan
consisting of various types of inspection steps, such as
change a probe or measure a point. The plan is encoded in
the DMIS format.   A single DMIS file is generated for
each feature. This plan is executed by the CMM Task
controller using a DMIS interpreter, which generates
commands to give to the Elemental Move (Emove)
controller. These commands are movement commands for
the CMM arm. The lower levels of the hierarchy, Prim and
Servo, accomplish the movements and record the

coordinates when the probe contacts the part surface. The
coordinates are fed back up the chain up to the Task level,
where they are used to compute the feature parameter that
was being measured. The resulting feature measurement is
incorporated into the output DMIS file, to be reviewed by
the operator or by an automated program that flags out of
tolerance conditions.

The planning language used for the Cell and Inspection
Workstation controllers is A Language for Process
Specification (ALPS) [5] augmented with types of
commands appropriate for those controllers. The language
is modeled in EXPRESS [10]. Plan files for those
controllers are prepared in the STEP Part 21 format [11], a
standard format devised for use with EXPRESS.

5. Pose Estimation

The Pose Estimation and Part Recognition (PEPR)
subsystem produces a coarse-resolution estimate of the
location of the part on the inspection workstation table.
The current implementation supports laminar prismatic
parts and is based on an algorithm that performs an
efficient search based on a priori ordering of model feature
sets into “words.” A 2D set of edge features is extracted
from the camera image of the part.  The model of the part
is used by the solid modeling engine to produce a
synthetic 2D image and its corresponding edge features.
The model edge features are formed offline into feature
sets (words) with attributes (letters).   These letters are
ordered canonically within each word and then the words
are ordered in a dictionary of model feature sets.  At
runtime, sensed features sets (words) are formed, ordered,
and matched to the model dictionary words.  Pose
estimates are generated and a pose clustering setup
completes the algorithm.

6. Software Development

In addition to building an example of RCS-based
control by using the RCS architecture for our inspection
workstation, we are investigating ways to facilitate the use
of RCS in construction of subsystems or entire controllers
by other system builders.    A corollary benefit to being
able to develop a robust and usable software development
framework is the potential for software reuse.   We are
experimenting with a component-based, modular approach
that follows the RCS model for control nodes.   Software
tools that support this development effort include
internally developed ones and commercially available
systems.

The most basic element of the IWS software
engineering environment is an RCS template.   An RCS
template is defined as a set of C++ classes that define the
components that comprise an RCS control node: BG, SP,
WM, and VJ.   The operations, interconnections, and



timing mechanisms appropriate for each of these modules
are built into the templates.   For instance, the executor
(EX) portion of Behavior Generation takes care of parsing
the plan generated by the BG Planner (PL) and manages
the communication of portions of this plan to the
appropriate subordinate, monitors the feedback from the
subordinate and handles exceptions.  This IWS testbed
implementation combines the SP and WM into a single
module and splits out the BG into the PL and EX.   SP and
WM are combined into a single SPWM template due to
computational considerations; there can be large quantities
of data flowing from the cameras.   The PL and EX have
been separated to better support the more detailed and
complex interactions within and between them.   The
templates we are using are based on the ISAM variant of
RCS [15].

To build a system, the engineers instantiate the generic
modules into their system, populate them with their
algorithms, attach the appropriate knowledge bases, and
make the connections between the nodes.     Although
tools are not required in order to follow this process, we
have used two different tools in our development.   One
was developed in-house [16] and was especially built to
support an earlier version of RCS, in which the individual
modules within the control nodes have not been fully
fleshed out and are not separated out.    This Java-based
tool provides graphical means of defining the hierarchy,
automatically creating the command and status
connections between nodes.    Code is generated from this
tool, to which developers add their specific algorithms or
data structures.   Similarly, we are working with
ControlShell, a tool from Real-Time Innovations Inc.
aimed at computer-aided control system design.
ControlShell is a general-purpose tool, so we were able to
use it to build our own BG, SPWM, and VJ template
components. These were put into a repository and can be
accessed by developers.   We were also able to develop
and reuse functioning components and interfaces in this
environment. This system is graphical and enables the user
to design the hierarchy, its interconnections, and to
generate code, which is subsequently filled in with the
specific algorithms using a text editor.

Another area of investigation is that of component
specifications.    To have truly open and interoperable
control systems, all of the principal computational
elements need to be well defined within a framework.
This enables incorporation of third-party components that
adhere to the specification requirements.  RCS provides a
framework in which to specify the main processing units,
as defined by the templates.  The specific algorithms that
perform the sensory processing, planning, and value
judgement must also be well-defined in order to facilitate
being able to plug and play or to reuse existing ones.
Previous work has led to a comprehensive set of
descriptors for the part pose estimation class of algorithms

[6][12].   Given a set of categories, an algorithm’s
provider can fill them in and publish the specifications.
Those interested in employing an available algorithm
rather than writing their own can locate an existing
component and assess its applicability from the
specifications, similarly to how a hardware engineer
selects semincondutor chips from a catalog.  The
ControlShell environment provides a shared component
repository with links to HTML files containing component
specifications.

7. Knowledge in the Inspection Workstation

There are three main categories of knowledge utilized
by the inspection workstation.  The categorization of the
knowledge is useful in helping evaluate the
implementation of the testbed.   Understanding how and
when knowledge is used, as well as its longevity, can help
formalize the definition of the architectural elements.
This definition guides the requirements for software
development tools and environments.  Once the definition
is clear, designers and implementers know where they
need to add their specific items of interest, be it novel
planning algorithms or interfaces to their solid modeling
servers.   The categories in the IWS and examples within
each are described:
1. externally-received (a priori) models that are

invariant
 the part to be measured
 the workstation kinematics and dynamics

2. in situ world models generated from sensory inputs
and processing by the system

 intermediate representations of the part or its
features for use by planning and evaluation
algorithms

 point, edge, and surface features extracted from
camera images

 estimation of the state of the system
 feature dimensions computed from measured

points
3. procedural knowledge that enables the system to

accomplish the tasks it is given
 How to localize the part on the work surface
 How to generate inspection plans for the given

part features
 How to perform the inspection instructions
 How to perform motion commands
 How to stay within the error bounds during

execution of any motion or action
 How to handle emergency or out-of-range

situations
Procedural knowledge is considered part of the

knowledge that is added to the RCS templates as an
application system is built.   Certain types of task-specific
knowledge can be captured in Finite State Machines



(FSMs) that are easy to understand, develop, and maintain.
Tools such as ControlShell facilitate creation and
maintenance of FSMs. Typically, FSMs can be used to
control high level behaviors or states of the system.
Software that implements algorithmic knowledge performs
most of the actual planning, sensory processing,
simulation, and execution.   FSMs can be used to organize
high-level behavior and hide the complex algorithmic
code.   In our Inspection System, the FSM complexity
increases as you go up the hierarchy.   There are no FSMs
at the servo level, whereas the motion-related FSM at the
Emove level has 37 states.  The Prim level FSM has 18
states.  Generally speaking, algorithmic complexity
increases as you go down the hierarchy.   One exception is
at the servo level: the Prim and Emove trajectory
generators are both more complex than the servo level
trajectory generator.   One rough measure of complexity is
number of lines of code.  Emove has 190 lines, Prim has
340, and Servo has only 40.

With a knowledge base that is centered on the part, the
control system can associate derived and computed data to
the part model and its features and attributes.   This can
organize the knowledge around the end product of the
enterprise, i.e., the part that is being manufactured.   The
relationships between derived data and the parent entity on
the part model can be traced and maintained.  For
example, for some of the sensory processing algorithms, it
is useful to know the “parent” feature or geometry that a
synthetically generated edge feature was derived from.
That is, knowing that a linear edge came from a certain
pocket feature, the algorithm can use adjacency
information to find nearby or related geometries in order
to aid its matching between sensed (vision) features and
those generated from the model.

Table 1: Example world model entities and
commands per hierarchy level

Hierarchy
Level

World Model Entities Command
Vocabulary

Cell Starting Workpiece,
Final Part

Inspect_Part

Workstation Setup, access volumes Inspect_Setup
Manufacturing Features
(e.g., pockets, holes,
bosses)

Inspect_FeatureTask

surfaces, edges Locate_Part

EMove Target Point (x,y,z and
tolerance)

Measure_Point

Prim Way Point Goto (x,y,z, Vel)

Because of the top-down decomposition of the IWS
software, the knowledge has a corresponding hierarchy.
At each level, control nodes contain, create, and utilize

knowledge that is appropriate to their temporal and spatial
scope.   The node may need to integrate data from a
subordinate level in order to make the information useful
for its purposes.   Similarly, it must decompose and
translate the plans that it generates into the vocabulary and
granularity that is appropriate for its subordinate nodes
and is within the scope of that node’s knowledge and
ability.    Table 1 contains examples of world model
entities and command vocabulary for the top five levels of
the hierarchy.

8. Conclusions and Future Directions

We have described the main elements of an inspection
testbed being developed to study knowledge issues for
intelligent control.   Our approach integrates capabilities
that work from a single model of the manufactured part
and its attributes.  The inspection plan is generated at the
CMM from the manufacturing features of the part, using a
solid modeling server for intermediate geometric
calculations.    The part’s location on the inspection
workstation’s table is computed using vision and image
features computed from a synthetic image of the solid
model.   The world model and knowledge base are being
developed in order to study ways to represent the part, its
attributes, manufacturing processes, and sensed data in
order to enable more efficient and autonomous inspections
and to facilitate the design and implementation of
advanced inspection architectures.    Our preliminary
conclusions lead us to categorize knowledge in terms of its
permanence and whether it is procedural or declarative.
We also find that it is advantageous to leverage a single
model within the entire workstation hierarchy and use it as
the anchor for other sorts of knowledge, both permanent
and derived.

We plan to evolve our testbed to include more
advanced capabilities and further our studies.   We will
integrate different part pose estimation algorithms and
validate our component specifications for this class of
algorithms.   We are working to develop more robust
visualization techniques for inspection results using either
commercial packages or custom web-based inspection
displays.  We plan to integrate vision-guided inspection,
which is research being done by another team in the
Intelligent Systems Division [13].  This work will extend
the use of the sensed and CAD models. Future work will
investigate more fully the knowledge aspects of
integration with the greater enterprise.   For instance, what
kind of measurements and data should be transmitted to
the shop floor controllers?  We ultimately intend to use the
results from this testbed to propose open architecture
component specifications that would help in the
construction of inspection systems.  This work can be
applied to other intelligent manufacturing control
applications.
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